32 research outputs found

    The Complexity of Finding Reset Words in Finite Automata

    Get PDF
    We study several problems related to finding reset words in deterministic finite automata. In particular, we establish that the problem of deciding whether a shortest reset word has length k is complete for the complexity class DP. This result answers a question posed by Volkov. For the search problems of finding a shortest reset word and the length of a shortest reset word, we establish membership in the complexity classes FP^NP and FP^NP[log], respectively. Moreover, we show that both these problems are hard for FP^NP[log]. Finally, we observe that computing a reset word of a given length is FNP-complete.Comment: 16 pages, revised versio

    The Complexity of Reasoning for Fragments of Default Logic

    Get PDF
    Default logic was introduced by Reiter in 1980. In 1992, Gottlob classified the complexity of the extension existence problem for propositional default logic as \SigmaPtwo-complete, and the complexity of the credulous and skeptical reasoning problem as SigmaP2-complete, resp. PiP2-complete. Additionally, he investigated restrictions on the default rules, i.e., semi-normal default rules. Selman made in 1992 a similar approach with disjunction-free and unary default rules. In this paper we systematically restrict the set of allowed propositional connectives. We give a complete complexity classification for all sets of Boolean functions in the meaning of Post's lattice for all three common decision problems for propositional default logic. We show that the complexity is a hexachotomy (SigmaP2-, DeltaP2-, NP-, P-, NL-complete, trivial) for the extension existence problem, while for the credulous and skeptical reasoning problem we obtain similar classifications without trivial cases.Comment: Corrected versio

    A common algebraic description for probabilistic and quantum computations

    Get PDF
    AbstractThrough the study of gate arrays we develop a unified framework to deal with probabilistic and quantum computations, where the former is shown to be a natural special case of the latter. On this basis we show how to encode a probabilistic or quantum gate array into a sum-free tensor formula which satisfies the conditions of the partial trace problem, and vice-versa; that is, given a tensor formula F of order n×1 over a semiring S plus a positive integer k, deciding whether the kth partial trace of the matrix valSn,n(F·FT) fulfills a certain property. We use this to show that a certain promise version of the sum-free partial trace problem is complete for the class pr- BPP (promise BPP) for formulas over the semiring (Q+,+,·) of the positive rational numbers, for pr-BQP (promise BQP) in the case of formulas defined over the field (Q+,+,·), and if the promise is given up, then completeness for PP is shown, regardless whether tensor formulas over positive rationals or rationals in general are used. This suggests that the difference between probabilistic and quantum polytime computers may ultimately lie in the possibility, in the latter case, of having destructive interference between computations occurring in parallel. Moreover, by considering variants of this problem, classes like ⊕P, NP, C=P, its complement co-C=P, the promise version of Valiant's class UP, its generalization promise SPP, and unique polytime US can be characterized by carrying the problem properties and the underlying semiring

    Kondo effect in coupled quantum dots: a Non-crossing approximation study

    Full text link
    The out-of-equilibrium transport properties of a double quantum dot system in the Kondo regime are studied theoretically by means of a two-impurity Anderson Hamiltonian with inter-impurity hopping. The Hamiltonian, formulated in slave-boson language, is solved by means of a generalization of the non-crossing approximation (NCA) to the present problem. We provide benchmark calculations of the predictions of the NCA for the linear and nonlinear transport properties of coupled quantum dots in the Kondo regime. We give a series of predictions that can be observed experimentally in linear and nonlinear transport measurements through coupled quantum dots. Importantly, it is demonstrated that measurements of the differential conductance G=dI/dV{\cal G}=dI/dV, for the appropriate values of voltages and inter-dot tunneling couplings, can give a direct observation of the coherent superposition between the many-body Kondo states of each dot. This coherence can be also detected in the linear transport through the system: the curve linear conductance vs temperature is non-monotonic, with a maximum at a temperature T∗T^* characterizing quantum coherence between both Kondo states.Comment: 20 pages, 17 figure

    The intersection of aging biology and the pathobiology of lung diseases: A joint NHLBI/NIA Workshop.

    No full text
    Death from chronic lung disease is increasing and Chronic Obstructive Pulmonary Disease has become the third leading cause of death in the United States in the past decade. Both chronic and acute lung diseases disproportionately affect elderly individuals, making it likely that these diseases will become more frequent and severe as the worldwide population ages. Chronic lung diseases are associated with substantial morbidity, frequently resulting in exercise limiting dyspnea, immobilization and isolation. Therefore, effective strategies to prevent or treat lung disease are likely to increase healthspan as well as lifespan. This review summarizes the findings of a joint workshop sponsored by the NIA and NHLBI that brought together investigators focused on aging and lung biology. These investigators encouraged the use of genetic systems and aged animals in the study of lung disease and the development of integrative systems-based platforms that can dynamically incorporate datasets that describe the genomics, transcriptomics, epigenomics, metabolomics and proteomics of the aging lung in health and disease. Further research was recommended to integrate benchmark biological hallmarks of aging in the lung with the pathobiology of acute and chronic lung diseases with divergent pathologies for which advanced age is the most important risk factor
    corecore